Electrocatalytic oxygen reduction kinetics on Fe-center of nitrogen-doped graphene.
نویسندگان
چکیده
The Fe/N/C catalysts have emerged recently as a representative class of non-Pt catalysts for oxygen electrocatalytic reduction, which could have a competitive catalytic performance to Pt. However, the nature of the catalyst remains elusive, especially on the active site structure and the electrocatalytic kinetics. Here we examine two kinds of Fe/N active sites for Fe/N/C catalysts, namely, the four-coordinated FeN4 and the five-coordinated Fe(CN)N4 centers embedded in graphene layers. By using large-scale first principles calculations with a periodic continuum solvation model based on the Modified-Poisson-Boltzmann equation (CM-MPB), we identified the four (4e) and two electron (2e) oxygen reduction pathways under acidic conditions. We find that both 4e and 2e pathways involves the formation of an OOH intermediate, which breaks its O-OH bond in the 4e pathway but is reduced to H2O2 in the 2e pathway. We show that at 0.8 V vs. SHE, the 4e pathway is preferred at both FeN4 and Fe(CN)N4 centers, but the 2e pathway is kinetically also likely on the Fe(CN)N4 center. The O-OH bond breaking of OOH is the key kinetic step, which has a similar free energy barrier to the OH reduction on the FeN4 center, and is the rate-determining step on the Fe(CN)N4 center. Due to the high adsorption energy of Fe towards the fifth ligand, such as OH and CN, we expect that the active site of the real Fe/N/C catalyst is the five coordinated Fe center. We found that the barrier of the O-OH bond breaking step is not sensitive to potential and a Tafel slope of 60 mV is predicted for the ORR on the Fe(CN)N4 center, which is consistent with experimental observation.
منابع مشابه
Preparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts
Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...
متن کاملNitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction.
Nitrogen doping has been a powerful way to modify the properties of carbon materials ranging from activated carbon to graphene. Here we report on a solution chemistry approach to nitrogen-doped colloidal graphene quantum dots with well-defined structures. N-doping was demonstrated to significantly affect the properties of the quantum dots, including the emergence of size-dependent electrocataly...
متن کاملEnhancing Electrocatalytic Oxygen Reduction on Nitrogen-Doped Graphene by Active Sites Implantation
The shortage of nitrogen active sites and relatively low nitrogen content result in unsatisfying eletrocatalytic activity and durability of nitrogen-doped graphene (NG) for oxygen reduction reaction (ORR). Here we report a novel approach to substantially enhance electrocatalytic oxygen reduction on NG electrode by the implantation of nitrogen active sites with mesoporous graphitic carbon nitrid...
متن کاملBottom-up synthesis of high-performance nitrogen-enriched transition metal/graphene oxygen reduction electrocatalysts both in alkaline and acidic solution.
Oxygen reduction electrocatalysts with low cost and excellent performance are urgently required for large-scale application in fuel cells and metal-air batteries. Though nitrogen-enriched transition metal/graphene hybrids (N-TM/G, TM = Fe, Co, and Ni and related compounds) have been developed as novel substitutes for precious metal catalysts (PMCs) towards oxygen reduction reaction (ORR), a sig...
متن کاملNitrogen-doped carbon dots decorated on graphene: a novel all-carbon hybrid electrocatalyst for enhanced oxygen reduction reaction.
An all-carbon hybrid, composed of coal-based nitrogen-doped carbon dots decorated on graphene, was prepared via hydrothermal treatment. The hybrid possesses comparable electrocatalytic activity, better durability and methanol tolerance than those of the commercial Pt-based electrocatalysts for oxygen reduction reaction, indicative of its great potential in fuel cells.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 27 شماره
صفحات -
تاریخ انتشار 2014